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We show that when the localizability law prevails [ 11, i.e. in the case when the 
momentum stream at the surface of a body depends basically on the local angle 
between the normal to the surface and the direction of the flight velocity (e. g. 
hypersonic Newtonian gas flow, rarefied gas flow, influence of light, etc.), gene- 
ralized similarity laws can be established connecting the aerodynamic charac- 
teristics of the nonaffine-similar bodies in gas flows of different modes (e.g. the 
reference body is in a Newtonian flow and the complementary body is in a free- 
molecular flow of rarefied gas). Methods of ~s~ucdng the ~mplernen~~ 
bodies are worlted out and examples of application of the proposed similarity 
laws are given. A particular example of such a law for a (plane-parallel) flow 
past a profile under certain additional restrictions was considered under the as- 
sumptions of the localizability law in [2] , and for a Newtonian hypersonic gas 
flow in p]. 

‘0 

Fig, 3 

1. Statement of the problrm. We consider a flow past a solid body witha 
homothetic property [4] at zero angle of attach under the conditions of “the localizabi- 
lity law”. The equation of the surface of the body (Fig. 1) is given in the form 

r (2, a) = ~ cp (z) := pI (a) 9 (I), cp (0) = 0, ai t\( a < at, 0 B 2 G St (1.1) 

where the functions p(a) and q(z) characterize, respectively, the lines of intersection 
of the surface of the body with a certain plane perpendicular to the OX-axis, and with 
the XOY-plane. The expressions for the drag coefficient a, and lift coefficient cy 
with the localizability law prevailing fl] , are considerably simplified when the integra- 
tion with respect to a and + can be carried out separately. This occurs in the case of 
slender bodies (pp cp’* G$ f), while for an arbitrary function cp (2) it takes place only in 
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the case when the function p* (a) satisfies the equation 

1/ p,2 + P.‘~ / paQ = C = const (1.2) 

i.e. when the boundary of intersection with the ABC planes perpendicular to the OX - 
axis consists of arcs of circles with the center at A , and staight line segments (these 

cases were mentioned in [5] , where a hypersonic Newtonian flow was considered). Thus 
this class includes, in particular, semisolids of revolution and solids with polygonal trans- 
verse cross sections. 

Assuming that the function p* (a) is given, we can write the expressions for the charac- 
teristics c, and cy in the form 

1 

% = PI, cy= Pa, Pi =; 
s 

cq (E)“fi (9) df, I = 2. , I3 = arctg “:p) - (1.3) 
0 xf 

where the functions fi (0) are determined by the character of the flow and by the form 
of the transverse cross section. and v = 1. 

We note that in the case of a flow past a profile the lower boundary of which is deter- 

mined by the function cp (4 and the upper boundary is the OX -axis, the formulas for 

the coeffcients c, and c,, are obtained from (1.3) with Y = 0 [Z]. For the solids the 
characteristics of which are represented by (1.3), transformations (generally nonaffine) 
can be found, which transform the reference solids into the complementary solids of the 

same class, and the similarity laws derived which can be used to compute the aerodyna- 
mic characteristics of the complementary solid from those of the reference solid. 

2. Complementary rolids. In what follows, the quantities z(“) and Y(“) (v = 
0, 1) will be assumed dimensionless (related to x,(O)). kt the form of the reference 

solid be given by the function p (0) and the equation of intersection of the body surface 
with the plane 2 = 0 

Y(O) = cp (z(O)), cp (0) = 0, ‘p > 0, cp’ > 0 for 0 < 5(O) < 1 

The equation Y(O) = ‘p (z(O)) can be written parameterically in the form 

z(O) = F-l (E), Y(O) = cp [F-l (E)] 
a@) 

(2.1) 

5 = 1 cp (t)“Q, [e(o) (t)] dt = F (do’), e(O) (t) == arctg cp’ (t) 

0 

Here 9 and @‘l are sufficiently smooth functions nonnegative on (0, n / 2) which define 
the transformation, vj = 0 in the case of a flow past a profile and vi = 1 in the case of 

a flow past a homothetic body. 
If the form of the transverse cross section of the body obtained by the aansformation 

is known, then the form of the body surface will be defined, if the equations Y(l) = Y(l) (8 

and z(l) = 2”’ (E) are given. The functions Y (0 (&) and z(l) (E) are found from 

yw*'s'w~ (fp) = 1, ~(1) = z(l) tg e(l), e(l) (4) = x ( 5) arctg 

and have the form r(O) 
z(1) = (VI + I)-“1 /(Wl) 

s 
Q (e) cp (t)““u (t)-“‘/(vl+l)dt, (2.2) 
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u (4 = 3E Q 03 tg IX WI g, w’ds, s 8 = e(O), Q (6) = -(@) 
@I IFP (WI (2.3) 

0 

where ~(0) is chosen as the parameter. 

8, Similarity r8lrtion8, The aerodynamic characteristics of the reference 
~su~rs~ipt O) and implemental (superscript I) bodies can be written, after changing 
the variable of integration to g , in the form 

i = i, 2, , . .i nl 

where no and nl denote the respective number of the characteristics considered for the 
reference and tie complemental body. We obviously have 

Let us assume that a set of constants ui4’ not all equal to zero exists such that the fol- 
lowing identity holds : 

$J’= 0, $,“’ = tg [II @)I (3.3) 
i=o j=O 

Then, dividing (3.3) by @, to)-, making use of (2.2), (2.3) and (3.2) and inte~atiRg in 
5 from 0 to & , we obtain a relation connecting the aerodynamic characteristics of the 
reference and the complementary body independent of the form of the reference body 

Since several linearly independent sets of quantities a ,(@I may exist, we can have several 
different relations of the tyie (3.4). Thus the transformation is defined by two functions 

Q and $ We note that the modes of flows 
past the reference and the complementary 
body can be different. When the complemen- 
tary body has a geometric shape (vl = i), 
the function p(l) must be given, 

Fig. 2 

4, Example. Let the reference and the 
complementary body be either in a hyperso- 
nic Newtonian flow, or in a free molecular 
rarefied gas flow, the flow modes not being 
necessarily the same for both bodies. We as- 
sume that the reference body is a semisolid 
of revolution bounded from above by the plane 
Y = 0. The complementary body will be 
sought in the class of geometric bodies the 
transverse cross section of which, parallel to 



712 A.I.Bunimovich and A.V.Dubinskii 

the YOZ-plane, has the form of a triangle with the vertices (y, z) = (0, 1), (1, 0), 

(0, -1). The ex~e~io~given~n El] for the aerodynamic characterisitics lead to the 

Let us define the ~a~f~mation by the functions 

x (0) = arctg f YTZtg e), 0 (0) = 

The identity (3.3) and (4.1) together yield two linearly 

.$@I = .I(v) = Qf = $(I) = 0, al(l) = 1, 

u”ti tg % (4.1) 

inde~ndent sets of coefficients 

ag(W = -_2 

Using the formulas (2.2) and (4-l) we write the equation of the implements contoux 
in the parametric form doi 

@f (t) dl t 

(5 

1(2 .X(o) 

'p @)(i) 

#of ($4) du , .p = 2 

is 

* p(o) (t) at 
'ir 

0 o 

I&en $0) = QxfO1’~., the equations of the implemental contour become 

p = bsii) (n+lii(=*Q, b = a(5+rO:‘2@-nt 2 _x$ljrf(,i~l)!(lt-3), 

Jf,+1 

(1) _ 
X! -' 

v-2+ + 1) 
,l (3 - n) 

Figure 2 depicts the reference and the implements (denoted by a prime) contours 
for the cases IZ = Y, (I) and a = Y; (2). 
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Proof is given of the convergence of the numerical method of discrete vortices 
(see, e. g., Cl -4])in the solution of real one-dimensional singular integral equa- 
tions of the first kind. It is shown that in the class of functions which are unlimi- 
ted at one end of the integration segment and limited at the other,there exists a 
unique solution for which the Chaplygin - Joukowski condition is satisfied. 

1. Statsmeat of problem. Computotfon sobeme. We consider the 
real one-dimensional singular integral equation (SIE) of the first kind 

b 

s +Y (4 
K (ma 4 
2 _ xo dx = f (4 (1.1) 

i 
with following conditions (conditions A): f (so) satisfies H&lder*s condition [S] with expo- 
nent a,@(u), for a < zO < b; H (z,, 5) satisfies the condition H (cc) with respect to xg and 
z in the region (I B so, x d b; Y (2) is the unknown function to be determined in the 
class of functions which are limited for 5 = b and unlimited for z = a. For x = a func- 
tion y (5) tends to infinity of order Y (0 < Y < 1) and can be, consequently, represented 
in the form y (x) = p (z) (z - a)-“, where a, (5) satisfies the condition H (a) for a < 
2 < b. 

The computation scheme of the considered method consists of dividing segment [a, bf 
into n equal parts of length h on each of which at a distance of l/r h from their left- 
hand end are marked computation points x1 at which values of the sought function y (zi) 
are calculated. At the same distance from the right-hand end are located check points 
.zOf (i, j=l, 2, . . ., n) at which boundary conditions are satisfied. Thus each check point 
%j lies in the middle between adjacent computation points tr and zj+r, except point 
xm which divides segment [z,, bl in a 2 : 1 ratio. 

The numerical method of discrete vortices consists of substituting for the SIE (1.1) of 
a system of n linear algebraic equations 


